An Infrared Study of the CaA Zeolite Reacted with CO₂

F. Ucun

Physics Department, Faculty of Arts and Sciences, Süleyman Demirel University, Isparta, Turkey

Reprint requests to Dr. F. U.; Fax: +90-246-237 11 06; E-mail: fucun@fef.sdu.edu.tr

Z. Naturforsch. **57a**, 283–284 (2002); received April 24, 2002

An infrared study was made on the CaA zeolite reacted with CO_2 gas. It was found that a carbonate ion (CO_3^{2-}) is formed by binding of CO_2 to an oxygen, and this carbonate ion coordinates to a Ca^{2+} cation in the zeolite in the unidentate way.

Key words: IR; CO2; CaA Zeolite.

The use of zeolites for the adsorption of harmful gases has widened [1, 2]. In [2] we have studied the ionic states, motional behavior and binding degrees of SO_2 and CO_2 reacted with type 5A (CaA) zeolite, and we have concluded that SO_2 is adsorbed on the surfaces while CO_2 is absorbed in the deep pores of this zeolite.

In the present work the binding states of CO₂ on the same zeolite was investigated by IR spectroscopy.

Experimental Details

Synthetic CaA was purchased from the British Drug House (BDH). The content of its unit cell is given in [3]. Firstly, the zeolite was kept for 5 h at 350°C to remove the water from the pores. 5 g of CaCO₃ were placed in a glass container, and HCl was dropped on it while it was heated. Then CO₂ gas was passed through the mixture, resulting in the reaction

$$CaCO_3 + 2HC1 \rightarrow CaCl_2 + CO_2 + H_2O$$
.

The IR spectra were taken from disks of powdered material with a Perkin Elmer Model 1430 Infrared Spectrophotometer.

Results and Discussion

Figure 1 shows the IR spectra of pure and CO₂ reacted CaA zeolite. The IR active modes of free CO₂, which are bonding and antisymmetrical stretching modes, are at 667 and 2350 cm⁻¹, respectively [4]. As seen in the figure, the vibration modes of CO₂ reacted on the zeolite CaA appear at quite different energies from those of

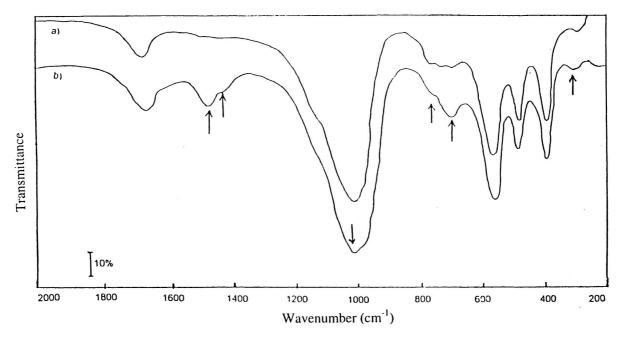


Fig. 1. IR spectra of the zeolite CaA. a) pure b) CO_2 reacted. The arrows indicate the frequencies given in Table 1.

0932-0784 / 02 / 0500-0283 \$ 06.00 © Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

Note Note

Assignment	$\begin{array}{c} \nu(\text{C-O}_{\text{II}}) \\ +\nu(\text{C-O}_{\text{I}}) \end{array}$	$\begin{matrix} \nu(\text{C-O}_{\text{I}}) \\ +\nu(\text{C-O}_{\text{II}}) \end{matrix}$	$\delta(O_{II}CO_{II})$	$ \begin{array}{c} \nu(\text{Co-O}_{\text{I}}) \\ \nu(\text{Ca-O}_{\text{I}}) \end{array} $	ν (C–O _{II})	$\varrho_{\rm r}({\rm O_{II}CO_{II}})$
$\begin{array}{c} \hline [Co(NH_3)_5CO_3]Br^* \\ [Co(NH_3)_5CO_3]I^* \\ CaA + Co_3 \end{array}$	1373	1070	756	362	1453	678
	1366	1065	776	360	1449	679
	1420	1010	750	340	1470	680

Table 1. Vibration modes and frequencies of CO_3 in $[Co(NH_3)_5CO_3]Br$, $[Co(NH_3)_5CO_3]I$ and the CaA zeolite. Results are in cm⁻¹. ν shows stretching, the δ bending and ϱ_r the rocking modes.

* [5]

free CO_2 . The reason for this is the formation of a carbonat ion (CO_3^{2-}) by the binding of CO_2 to an oxygen. The reactions must be

$$CO_2 + H_2O \rightarrow HCO_3^- + H^+,$$

 $HCO_3^- \rightarrow CO_3^{2-} + H^+.$

This carbonat ion can be bound to a Ca^{2+} cation in the zeolite in two ways. This is like the binding of carbonat ions with metals [5]. The two ways are shown in Scheme 1 on the right.

The free carbonat ion has 4 vibration modes. Two of them are degenerate. The binding of ${\rm CO_3}$ to a ${\rm Ca^{2+}}$ cation lowers the symmetry. In this situation, the vibration of v_1 , which is forbidden in the free form, becomes infrared active, and each of the doubly degenerate vibrations, v_3 and v_4 , splits into two bands. The splitting of the degenerate vibrations is larger in the bidentate way than in the unidentate way. Since the two CO splitting is small (1420–1470 cm⁻¹) as seen in Fig. 1, the binding of the ${\rm CO_3^{2-}}$ ion to the ${\rm Ca^{2+}}$ cation is in the unidentate way in the zeolite CaA. Thus, the combination bands $v({\rm C-O_{II}})$ and $v({\rm C-O_{I}})$ are at 1470 and 1420 cm⁻¹, respectively. These values are close to the

values, for the same bands, in $[Co(NH_3)_5CO_3]Br$ and $[Co(NH_3)_5CO_3]I$ [5]. The measurements in the present study and those in [5] are given in Table 1. Their spectra have also a band π around at 850 cm⁻¹. But it has not been observed in our spectrum.

As a result, a carbonat ion is formed on the zeolite CaA reacted with CO_2 , and this carbonat ion is bound to a Ca^{2+} cation in the unidentate way.

- [1] K. C. Khulbe, R. S. Mann, and A. Manoogran, Zeolites 5, 2 (1985).
- [2] F. Ucun, F. Köksal, and I. Kartal, Spect. Letters **4**, 641 (1996).
- [3] F. Ucun, F. Köksal, and R. Tapramaz, Zeolites **12**, 420 (1992).
- [4] R. Chang, Basic Principles of Spectroscopy, Japan 1971, p. 172.
 [5] K. Nakamoto, Infrared Spectra of Inorganic and Coordi-
- [5] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York 1970, p. 169.